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BY
JON AARONSON

ABSTRACT

We prove a Chow-Robbins type result for an ergodic, non-negative SSSP, and a
simular result for transformations preserving infinite measure, which implies that
for these transformations, no “‘absolute’ version of Hopf's theorem can hold

§0. Introduction

Let (Q, s, P, o) be an ergodic measure preserving transformation (e.m.p.t.) of
a probability space. Birkhoff’s pointwise ergodic theorem ([2], ch. 4) states:

TueoreM A. If f€ L'(Q, o, P) then (1/n)Z;lifea* — [ofdP a.e.
Theorem A already implies a primitive converse of itself:

ProrosiTioN B. Let f: Q1 — R be measurable and non-negative. Then if
lim,_.(1/n)ZiZh feo* <® on a set of positive measure then [qfdP <.

In [1], Chow and Robbins proved the following converse to the strong law of
large numbers:

THEOREM C. If {X.} are independent, identically distributed random variables
and b, are constants, such that (1/b,)Zi_; X, —> 1 a.e. then E(| X,|) <.

In fact, they proved the stronger result:

THueoreM D.  If {X.} are independent, identically distributed random variables
such that E(|X,|)= then V{b,} C R either lim,..|(1/b,)Z;_, Xi | = a.e. or
lim,~|(1/b.)Zi-; Xi | =0 a.e.
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We will “extend” Theorem D to the case where {X.} is an ergodic,
non-negative, strictly stationary stochastic process. We prove:

THeorReM 1. Let (Q, o, P, o) be an em.p.t., and let f: (1 — R be measurable
and non-negative. If E(f)== then V{b.} C (0, ) either
lim, .. (1/b)2r2i feo® == a.e. or lim,—.(1/b.)Z;2, foa* =0 a.e. (or both).

From Theorem 1, we immediately obtain the following converse to Theorem
A:

CororrarYy 1. If f: Q— R is measurable and non-negative, and b, are
constants s.t. (1/b,)2i=ifoa* —>1 a.e. then E(f) <.

An adaption of an example of D. Tanny ([4]) will show that Corollary 1 may
fail when the assumption of non-negativity is dropped.

Theorem 1 is a consequence of an analogous theorem for conservative
e.m.p.t.’s (c.e.m.p.t.’s) of infinite measure spaces. Let (X, B, u, T) be ac.e.m.p.t.
of a non-atomic, o-finite, infinite measure space. The classic ergodic theorem of
Hopf ({2]. ch. 4) states that:

THeoREM E. If f,g. € L'(X, B, ) and [xgdu #0 then

S [ s
S e | gu

X

forae. xeX

It is natural to ask whether an “absolute’ version of this can hold, i.e., can
there exist constants {a.} such that for every fE€ L.,

n—1

(*) ‘anOT“aL fdu ae.

1
an
We show that (*) cannot hold even for a single f€ L., and indeed when

p(X) ==

Tueorem 2. If (X, B, u, T) is a c.e.m.p.t. of a non-atomic, o-finite, infinite
measure space, then VY{a.} C R. either

n—1

E—EpOT"=oo a.e. VpEL‘,péO,f pdp >0
X

n—=>= @, k=0

or
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n—1
im— S peT* =0 ae VpeL' pz0
[¢]

o @n k=

(or both).

We prove Theorem 2 in §1, and deduce Theorem 1 from it in §2.
We note here that there are c.e.m.p.t.’s (X, B, u, T) of non-atomic, o-finite,
infinite measure spaces together with constants {a.} such that

e

VfEL!, £¢>0; v<pu st. v(X)<o.
We will discuss this kind of phenomenon in a later publication, confining

n—1

S s~ fan|zef)—0

1
a,

ourselves here to pointwise results.

This work was done under the supervision of Professor B. Weiss at the
Hebrew University of Jerusalem. The author is grateful to Professor B. Weiss
and Professor M. Keane for many helpful conversations.

§1. Proof of Theorem 2
First, we state the equivalent form of Theorem 2 which we prove:

THEOREM 2. Let (X, B, u, T) be a c.e.m.p.t. of a o-finite, non-atomic meas-
ure space. If 3{a.} CR., and p,q € L' (X, B, n) s.t. p,q =0, [xqdu >0 and
(1) p(x:lim...(1/a.)2Z6p(T x) >0 >0,
(i) p({x:lim,_(1/8.)2{ q(T x) <)) >0,
then p(X) <,

The main idea of the proof, which proceeds in a sequence of steps, is to choose
an appropriate set of positive, finite measure, and to show that the return time
function of this set has finite integral on it.

Ster 1. No generality is lost in assuming that a, < a,., 1 .

Proor. For peEL.={fEL'(X,B,n):fz0,[xfdu>0}. Let a(px)=
lim,_..(1/a.) rZbp(T*x) and B(p,x) = lima~.(1/a.)Z5op(T*x). By conser-
vativity and (ii) a. =%, so

1

alp, ) =lim = [ $ p(T)+p(T0)-p(x) |2 a(p. )

n—s®

and similarly B(p, Tx) = B(p, x).
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So, by conservativity and ergodicity, a(p,x)=«a(p), B(p,x)= B(p) ae.
Moreover, by Theorem E, 3¢, 8 € [0, %] s.t.

(L.1) Mm=aLp@4Mm=BLp@f wpeLL.

So the hypotheses imply that 0 <a = 8 <.
Now, choose p € L., p(x)>0, ¥x € X and choose x, s.t.
() Sr-op(T'xg)=o
(i) Jim, .. (1/a,)Zi2h p(T x) = a(p) >0,
(iii) 1im, . (1/a,)Z22b p(T*x0) = B(p) < .
Let a, = 22, p(T*x,), then @, < @,+1 T ®, and Vg € L.

o Gn o “ Bl

— 1 g . _ B)

im— ° =—

e a, =1 ~a(p) O

From Step 1 and (1.1) we can choose a. s.t. a, < a.., T ® and

A 1 n—1 1 n—1
(1.2) ﬂ—)<11m— 2 laoT*=lim— 2 1laoT*<u(A) ae.
M a,. n—ro a" k=0

VAERB 0<u(A)<w, where M E N.

Choose a strictly increasing, continuous function a(x) s.t. a(n) = a,, and let
b(x) be the inverse of a(x). Then b(x) is strictly increasing to .

Choose A € & such that u(A)=2.By(1.2), 3B C A such that u(B)=1, and

(1.3) a(ln) z 1.(T*x)=z6>0 Vnz=l, x€B.

Let ¢(x)=inf{k = 1: T*x € B} for x € B (the return time function of the set
B). (p(x) <> a.e. by conservativity.)

Define the transformation induced by T on B ([3]) by Tex = T*™x. Let
@n{x) =286 ¢(Tsx). Then ([3]) T is an e.m.p.t. and Tix = T%(x). By Kac’s
formula w(X)=fsedu. Let c(t)=us(p=1t), L(t)=foc(y)dy (where
ps(C)= (B N C)/u(B)).

We will show that [3 (c(¢)/L(¢))dt < which implies that fzedu < + or
w(X)< + o,

Step 2. 2. c(b(n)) <o
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Proor.
n(x)—1
1¢"(x)~l 2 1A(T’(x))
- 14(T’x) = t=5+————2 ae. by Theorem E.
=0 "
' > 1. (T'x)
=0
Also
e (x)-1 n—-1 Pr+i(x)"1
S o(Tx)=> > 1.(Tx)
;=0 k=0 j=¢x(x)
1 ‘P(T';;x)-l

=5 3 a(T(Thx)

;5:20a(¢(ﬂ;x)) by (1.3)

Hence lim,_..(1/n) 212 a(@(T5x)) <= a.e. on B. So by Proposition B:

L a(p)dp <o
> 3 mlae)zm <

321 ws (@ Z b(n)) <, O

Before we continue we need a lemma.

LemMa. Vm =1 Any(m) s.t. Vn = ny(m)
(1) b(mn)= mb(Mn),
(i) mb(n)= b(Mmn).

Proor. From (1.2)

a(‘Pn)ém a(‘Pn)<
n

n—e R

(1.4) 1<lim

n—o

M a.e.

Hence Ym = 1 Any(m) s.t. Yn = ny(m) Ix € B s.t.
n=a(e.(Tyx))=Mn for 0=k=m-1,
mn < a(@m.(x)) = Mmn.

Applying b to these inequalities, and noting that ¢..(x) = = ¢.(T5'x) yields
(i) and (ii). a
Let b(n) = =2} L(h(k)).
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STEP 3. lim,—...(b(n)/b(n))= 1.

Proor. From (1.4) we have that

(1.5) hm 3%—)3 1 ae.

Let
e(x) if @(x)=b(n)
f1(x) {
0 else.

By Step 2, for a.e. x € B, ¢(T5x)= b(k) for only finitely many k = 1. Hence
f(Tsx)# gp,'(T:‘;x) for only finitely many k = 1. This, in conjunction with (1.5),
gives

b( ) 2 fk(TBX)—l a.e.,

which in turn, in conjunction with Fatou’s lemma, gives

(1.6) lim s> [ fdu 2

n—x

Now

[, fdu = stz )y

b(k)
=f0 un(y = ¢ = b(k))dy

= L(b(k)).
Applying this inequality to (1.6) proves Step 3. l
StEP 4. Zioic(b(n)) <.
Proor. Using (ii) of the Lemma with m =2 we obtain n, s.t. Vn=n,
b(n)=1b(2Mn).
Using Step 3, we obtain n, = n, s.t. b(2Mn)Z3b(2Mn), ¥Yn = n,. Hence
b(2Mn)z b(n), Ya = n,. So ;- c(b(2Mn)) <. But ¢ | and b 1, so this is

enough. g
From Step 4 and the definition of 6(n) we have that

(17) 3 (Bn+1)- b(n ))M
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By Step 3, for n large
b(n)=ib(n)
> b(n)=2b(n)
= L(b(n))= L(2b(n))=2L(b(n)).

So by (1.7)
- _ c(ﬁ!nn
2(5(n+1) b(n)) L6 ))
Hence
ﬂﬂ w b(n+1) __Cjﬁl
o T2 ] TG
- © B(n+1) c 5 n
=2 [ feepe
=5 _ by _ .
2, b+ D=B0) gy
Hence

,L(X)=L odu = Lw c(t)dt = L(B(1))exp (L) c(t)/L(t)dt)<oo

Theorem 2 is established. a
We have actually proved (on application of Theorem E):
TueoreM 2", If (X, B, u, T) is a c.e.m.p.t. of a non-atomic, o-finite, infinite

measure space then

V{a.}]CR and fEL'(X, B, pn) st J' fdu #0:

either
_ l n—1
lim | — > foT* a.e
n—x A, k<o
or
1 n—1
lim | — > foT"|=0 ae
:,: a, =0

We do not know if Theorem 2" is true for f € L' with [xfdu =0.
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§2. Proof of Theorem 1 and an example

If the conclusion to Theorem 1 fails, then f#0 and b, — . It follows that

i biz oa(x)<nmbij foo*(ax)
and
l'n 1 1 n-1
hmb— 2 feo* (x)<hm—z fea*(ox)
thus

lim 7= Zfoa' and ll_qlb—2f°a

n k=0

n-—so

are constants a.e.; and the failure of the conclusion of Theorem 1 is tantamount
to:

@.1)

1 - _ n-1
0<a=lim m - 2 "(x)élimb— Y fook(x)=B<» Ve
e =0 n—=° Oy k=0
where P()') = 1. If it is assumed that E(f) = », then b,/n — , and so (2.1) is
unchanged by the addition of an integrable function to f. So no generality is lost
in assuming f: Q— N.
Choose x,€ Q' and let b, = 22} f(c*x,), then b, < b,., and

lim= > foo*z=<>0 ae,
n—»w n k=0 B
o n—1 B
lim— > feo*=—<o ae
n—=® Oy k=0 a

Normalizing b, we have established:

Step 1. If the conclusion of Theorem 1 fails, and E(f)=, then no
generality is lost in assuming:

@) f:Q-—N,

(i) b < bny,

(iii) 1<lim,_..(1/b,)2r2h foo* =lim,..(1/b,)Sizhfoo* <M ae. (M E N).

Choose a continuous, strictly increasing function b(t) s.t. b(n)=b,. Let a be
the inverse of b. Then a(t) is continuous and strictly increasing.

Before continuing, we need a lemma, analogous to that of §1:
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LemMMa. Vm =1 3n, s.t. Vn = ny:
(i) b(mn)= Mmb(n),
(ii) mb(n)= Mb(mn).

Proor. By (iii) of Step 1, Vn =1 3ny(m) s.t. Vn = ny(m) Ix €Q s.t.

b(n)g"E: foo*(a"x)=Mb(n) O0sjs=m-1

mn—1

b(mn)= Z f(oc*x)= Mb(mn).

The inequalities follow from the fact that

S 1@0=5 F foot (o) a
Let f.(x) =20 fe o (x).
STEP 2.
lginla(f")gﬁ a(nf")é M?>  ae.

n—sc

Proor. From (ii) of the Lemma, with m = M?, we get ngs.t. Vn = n,,
M?’b(n) = Mb(M*n), ie. Mb(n)=b(M*n).
Now, by (iii) of Step 1, for a.e. x€Q IN st. Vn= N
b(n)=f. = Mb(n)=b(M*n)
> n=a(f,)=M’n a
Now we build a tower on (Q, &, P, o) with f as the height function ([3]):
X ={(x,n):f(x)=n,nz=1},
(A,n)={(x,n):x EA} where A€ LN[fzn];

B = V: (IN[fznln)u= 21 P lesoisznt.ny,

(x,n+1) if f(x)zn+1
T(x,n)= {
(ox,1) if f(x)=n

It was shown in [3] that (X, B, u, T) is a c.e.m.p.t. and that u(X) = E(f). We
derived Step 2 on the assumptions that E(f) = « and that the theorem fails. We
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prove the theorem by deriving from Step 2 that u(X) < (contradicting the
assumption that E(f) = «). Let (= (,1). Clearly

falx)—1

Z Ia(T'(x,1))=n  VYxEQ.

Choose k.(x) s.t. fi(x)=n < fii(x). Then k,(x)—® a.e. and
- fin-1

lim = 2 (T*(x, 1)) = lim (fi.i(x)) 2 La(T'(x, 1))

n—>°° n

=1im—4—l—k = .

s a(fn(x)) ™ M by Step 2,

1 ! . - 1 frge1—1 ,
1"12 atn )2 La(T*(x, 1)) = lim ——— TG0 2 18(T' (%, 1))
_ o= ka(x)+1
—Ll_r}lm_l by Step 2.
So by Theorem 2 u(X) <o, O

AN ExaMPLE. We construct an e.m.p.t. (}, &, P,o) and a measurable
X:Q—-2Z st. E(|X|)= and (1/n)21';I,X°a"——>1 a.e.

Construction 1 (Ex. (a), [4]). An e.m.p.t. (Q, o, P,&) and a measurable
f:Q—> N s.t. E(f)= and (1/n)fed"—0 ae.

Let (O, o', P',0') be an e.m.p.t., let ¢:Q)'— N be s.t. E(p) <, E(p*)=
We define f on the tower above o’ with height function ¢.

Let Q={(x,n):n=1,¢(x)=n}, A=Via (L' N[p=n],n), P=
(1/C)Z5-1 P'|[enieznimy Where C = E(p),

(x,n+1) if ox)=n+1
a(x,n)=
(o'x,1) if e(x)=n
Then ([3]) (Q, %, P, ) is an e.m.p.t. and P(Q) = 1.
Let f:0— N be defined by f(x,n)=n

Ef)=¢ 3 kPlezk)= 3 M pio =)=

If we show that fo(&"(x,1))/n — 0 for a.e. x € (¥’ then by the ergodicity of &,
foea"/n—0 ae. on Q.

Let .(x)=212b@(0*x). If @(x)=n < @uai(x) then f(5"(x,1))= ¢ (o'*x)



Vol. 27, 1977 ERGODIC THEORY 173

and so f(&"(x,1)/n = @ (c'*x)/¢.(x). By the ergodic theorem ¢ (o"*x)/@i(x)— 0
a.e. on {} as k — ., So construction 1 is finished. O
We now construct the Example.

Construction 2 (Adapted from Ex. (b), [4]). Let I =[0,1), & be the Borel
o-algebra, A be Lebesgue measure and 7x = 2x mod1. Let

-1 if x€[0,})
u(x)=
+1 if x€[,1),

then the {u o 7"} are independent, identically distributed random variables, and
(I, B, A, 1) is mixing.

Let O=0xI A=AXB, P=PxA and ¢ =6 X%, then (O, &, P,0) is
e.m.p.t.

Let X(x,y) = f(x)u(y) - f(ox)u(ry) +1, then

E(X")= J'

Oxfu=1,uer=—

() + f(@)+ DaP(ry) =5 [ (F+fo0+1)dP =
1] o

and

n

n—1 _ an n
-};2X°cr"(x,y)=l+MX)—£MT—ﬂ—>l ae. 0
k=0
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