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ON THE ERGODIC THEORY OF 
NON-INTEGRABLE FUNCTIONS A N D  

INFINITE MEASURE SPACES 

BY 

J O N  A A R O N S O N  

ABSTRACT 

We prove a Chow-Robbins type result for an ergodic, non-negative SSSP, and a 
similar result for transformations preserving infinite measure, which implies that 
for these transformations, no "absolute" version of Hopf's theorem can hold 

w Introduction 

Let (~ ,  ~ ,  P, o-) be an ergodic  measu re  preserving t r ans fo rmat ion  (e.m.p. t . )  of 

a probabi l i ty  space.  Birkhoff ' s  pointwise  ergodic  t h e o r e m  ([2], ch. 4) states: 

THEOREM A. I f  r E  L I ( f I , , ~ , P )  then (1/n)E~-~ofo~ k ---~fnfdP a.e. 

T h e o r e m  A al ready implies a pr imi t ive  converse  of  itself: 

PROPosrrIoN B. Let f:I-I---~R be measurable and non-negative. Then if 

lim,_~(1/n)Z~-~of o ~r k < ~ on a set of positive measure then yofdP < ~. 

In [1], Chow and Robb ins  p roved  the following converse  to the s t rong law of 

large numbers :  

THEOREM C. I f  {X,} are independent, identically distributed random variables 

and b, are constants, such that (1/b,)E~ 1X~ ---> 1 a.e. then E ( I X I [ ) <  ~. 

In fact, they p roved  the s t ronger  result:  

THEOREM D. I f  {X. } are independent, iderttically distributed random variables 

such that E ( [ X l l ) = ~  then V { b , } C R  either l im .~ l (1 /b , )E~:~Xk l  = ~  a.e. or 

l i m ,~ l (1 /b . )E7 ,= ,  Xkl = 0 a.e. 

Received September 16, 1976 

163 



164 J A A R O N S O N  Israel J. Math 

We will "extend"  Theorem D to the case where {X,} is an ergodic, 

non-negative, strictly stationary stochastic process. We prove: 

THEOREM 1. Let (l~,~,P, tr) be an e.m.p.t., and let f : ~---~ R be measurable 

and non-negative. If E(f)  = ~ then V{b,} _C (0, 2) either 
lim,_~(1/b, , i = �9 .-i k )Ek=ofotr k ~ a.e.or hm,~| = 0  a.e. (or both). 

From Theorem 1, we immediately obtain the following converse to Theorem 

A: 

COROLLARY l. If f:l)---~R is measurable and non-negative, and b, are 
v, - i  focr  k constants s.t. (1/b.)~k=o ---~l a.e. then E ( f ) < ~ .  

An adaption of an example of D. Tanny ([4]) will show that Corollary 1 may 

fail when the assumption of non-negativity is dropped. 

Theorem 1 is a consequence of an analogous theorem for conservative 

e.m.p.t. 's (c.e.m.p.t.'s) of infinite measure spaces. Let (X, ~,  ~, T) be a c.e.m.p.t. 

of a non-atomic, o'-finite, infinite measure space. The classic ergodic theorem of 

Hopf ([2], ch. 4) states that: 

THEOREM E. If f, g, E L'(X, @, ~ ) and fx  gdtz / 0 then 

" '  L 
f ( T  kx ) fdtz 

k =(I 

n - !  ~' 

g(T*x) fx gd.  
k = 0 

for a.e. x E X. 

It is natural to ask whether an "absolute" version of this can hold, i.e., can 

there exist constants {a,} such that for every f E L I .  

. l  L 1 Z f o T E _ .  fdt~ a.e. (*) 

We show that (*)  cannot hold even for a single f E L', and indeed when 
= 

THEOREM 2. If (X, ~, tz, T) is a c.e.m.p.t, of a non-atomic, it-finite, infinite 
measure space, then V{a,} C_ R+ either 

- -  l " l  f• l i m - - ~  p o T ~ = ~  a.e. V p ~ L l ,  p>=O, pdt~>O 
. ~  a n  k = o  

o r  



Vol. 27, 1977 ERGODIC THEORY 165 

n - 1  

lim 1 ~ T k - -  po = 0  a.e. V p E L ' , p > _ O  
,--"-~ a, k-o 

(or both ). 

We prove Theorem 2 in w and deduce Theorem 1 from it in w 

We note here that there are c.e.m.p.t.'s (X, ~,  It, T) of non-atomic, ~r-finite, 

infinite measure spaces together with constants {a.} such that 

v x: _T~x)  - fdIt -"~ 0 
a n  k = 0  

V f E L  ~, ~ > 0 ;  v ,~I t  s.t. v ( X ) < ~ .  

We will discuss this kind of phenomenon in a later publication, confining 

ourselves here to pointwise results. 

This work was done under the supervision of Professor B. Weiss at the 

Hebrew University of Jerusalem. The author is grateful to Professor B. Weiss 

and Professor M. Keane for many helpful conversations. 

w Proo| of Theorem 2 

First, we state the equivalent form of Theorem 2 which we prove: 

THEOREM 2'. Let (X, ~3, It, T) be a c.e.m.p.t, of a cr-finite, non-atomic meas- 
ure space. If 3{a,}C_R., and p, qEL'(X,~.3,  It) s.t. p,q>=O, f• > 0  and 

(i) It({x:lim,_~(1/a,)E~-top(T~x)>O})>O, 

(ii) It({x: lim,_~(1/a,)E~-'oq(Tkx)< ~})>0,  

then It (X) < ~. 

The main idea of the proof, which proceeds in a sequence of steps, is to choose 

an appropriate set of positive, finite measure, and to show that the return time 

function of this set has finite integral on it. 

STEP 1. No generality is lost in assuming that a, < a,+, 1' ~. 

PROOF. For pEL~+={fEL' (X,~ , I t ) : f>=O,f •  Let a ( p , x ) =  

lim,~(1/a,)E~-Jop(T~x) and f l (p ,x)=l im . . . .  (1/a,)E~-~op(Tkx). By conser- 

vativity and (ii) a, ~ oo, so 

a(p, Tx)= lim l [ ~  ' p (T ' x )+  p(T"x)-p(x)]>= a(p,x)  

and similarly /3(p, Tx) >- ~(p,x). 
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So, 
Moreover,  by Theorem E, ::la,/3 E [0, oo] s.t. 

by conservativity and ergodicity, a(p,x)=a(p) ,  f l(p,x)=fl(p) a.e. 

(1.1) a ( p ) = a f ~  pdtz;fl(p)=/3f• pdl~ VpEL~+. 

So the hypotheses imply that 0 < a = fl < ~. 

Now, choose p E L+', p ( x ) > 0 ,  Vx E X and choose xo s.t. 

(i) Y.~=op(T'xo)= ~, 
(ii) l im,_~(1/a,  "-' k _ )X~=op(T x o ) -  a ( p ) > O ,  

(iii) lim,~=(1/a. "-' k _ )Y.~=,,p(T x o ) - / 3 ( p )  < oo. 

Let ,~. = Y.~='op(Tkxo), then a. < ti.+~ 1' 0% and Vq E L I. 

n - 1  

lim 1 Z q~  T~ > a ( q ) > 0 ,  
a, ~=o =/3(p) 

- -  1 " - '  / 3 ( q )  
lim _-=- ~ qoTk<= <~. 
.~- a. ~=o a(p) 

[] 

From Step 1 and (1.1) we can choose a, s . t . a .  < a . . l  1 ~ oo and 

/x ( a )  1 ~"-' - -  1 "._:,' 
(1 @2~ T k Z T k M < l i m - -  [ % l a o  _-Iim 1A < / z ( A )  a.e. 

, ,~  a, = .~| a, k=o 

VA E 3~, 0 < / z ( A ) < o o ,  where M E N .  
Choose a strictly increasing, continuous function a(x) s.t. a(n)= a,, and let 

b(x) be the inverse of a(x). Then b(x) is strictly increasing to ~. 

Choose A E ~ such t h a t / z ( A )  = 2. By (1.2), 3 B  _C A such tha t /x (B)  = 1, and 

n ~ l  

1 Z 1A(Tkx) >--~>0 Vn_->l, x E B .  (1.3) a(n) k=o 

Let ~p(x) = inf{k -> 1: Tkx E B} for x E B (the return time function of the set 

B).  (r oo a.e. by conservativity.) 

Define the transformation induced by T on B ([3]) by TBx = T*~X~x. Let 

~,(x) = X~-~o q~(Tgx). Then ([3]) TB is an e.m.p.t, and Tgx = T*"~X~(x). By Kac's 

formula iz(X.)= fB~pd#. Let c(t)= tz~(~o > t), L(t)= f~c(y)dy (where 

~.(c) = ~,(B n c)h,(B)). 
We will show that fo(c(t)/L(t))dt <00 which implies that fs~odlz < +oo or 

~(x)< +oo .  

STEP 2. X:=,c(b(n))<~.  
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PROOF. 

~r 1 

! E 
FI /=o 

Also 

1A (T'x) = 

~r 

E 
1 = 0  

~M(x)--I 

~, la (T ' (x))  
i=0 

E 1. (T'x) 
/ = 0  

2 a.e. by Theorem E. 

n - 1  q~k+l ( x ) - I  

l a (T 'x )  = ~ Z l a (T 'x )  
k = 0  ] =, ,ot,(x) 

n--1 ~(Tkx) -1 

= ~, ~, I1A(T'(T~x)) 
k = 0  ] = 0  

n - I  

>-_6~, a(r by (1.3). 
k = O  

Ek=oa(~o(T~x))<oo a.e. on B. So by Proposition B: Hence l i m . ~ ( 1 / n )  .-1 

fB a(q~)dl~ < oo 

~] /.t.(a(q~)=> n)<oo 
n = l  

=), ~ /z~(q~ _-> b(n))<~.  
n = l  

[] 

Before we continue we need a lemma. 

LEMMA. Vm _-> 1 3no(m) s.r Vn >- no(m) 
(i) b(mn)<= mb(Mn), 
(ii) rob(n) <= b(Mmn). 

PROOF. From (1.2) 

(1.4) i < lira a(q~.._____J) <= ~ a(q~.) - - < M  a.e. 

Hence Vm _-> 1 3no(m) s.t. Vn >_ no(m) 3x ~ B s.t. 

n<a(q~.(T~"x))<Mn= = for 0 = < k < m - l , =  

mn = < a(q~,.. (x )) = < Mmn. 

Applying b to these inequalities, and noting that q~,..(x)= ET=-~ q~.(T~"x) yields 

(i) and (ii). [] 

Let /~(n)= E~-~oL(h(k)). 
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STEP 3. 

PROOF. 

(1.5) 

Let 

li_mm._=(~(n)/b(n)) _~ 1. 

From (1.4) we have that 

lira ~ > 1 
.~= b(n) = 

a . e .  

~(x) it ~(x) <-b(n) 
f . ( x )  ! 

0 else. 

(p(TBx)= b(k)  for only finitely many k ~_ 1. Hence By Step 2, for a.e. x ~ B, k > 
T k > f k ( T g x ) ~  ~ ( B x )  for only finitely many k = 1. This, in conjunction with (1.5), 

gives 

n-! 
lim 1 ~, f~ ( T~x ) > = 1 
. ~  t~(n) 4=0 

a.e., 

which in turn, in conjunction with Fatou's lemma, gives 

(1.6) 

Now 

iim b -~  ~ fB fkdl.t >----1. 

f~el~ = ~,~ ff, > y)ely 
) 

f 
b ( k )  

= ~ ( y  _-< ,p _-< b ( k ) ) e l y  
jo 

<= L(b(k)) .  

Applying this inequality to (1.6) proves Step 3. [] 

STEP 4. Y-7=,c(/~(n))<~. 

PROOF. Using (ii) of the Lemma with m = 2  we obtain no s.t. Vn ~ no 

b(n) <- �89 

Using Step 3, we obtain nl--> no s.t. b(2Mn)>=�89 Vn >= n,. Hence 

b(2Mn)_-> b(n), Vn >= nl. So Y-~0 c([,(2Mn)) < ~. But c ,~ and b ~', so this is 

enough. [] 

From Step 4 and the definition of /;(n) we have that 

(1.7) ~ (/~(n + 1)- /~(n))  c(b(n))  < oo. 
. : ,  L(b(n) )  
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By Step 3, for n large 

So by (1.7) 

Hence 

b(n)>  ~ =~b(n) 

# b ( n ) ~ 2 b ( n )  

#L(b(n ) )~L(2~(n) )~2L(b(n) ) .  

(/~(n + 1)-/~(n)) c(6(n)) < ~. 
,,-1 L(b(n)) 

fb c(t) ',,+1) (1) L(t) dt = ~ ( c(t) ,=1.1~1.) L(t) dt 

<_ ~ ~""+1' c b__~ d t 

= ~ (6(n + I)- b(n)) c(b(n)) < o~. 
n=l L(~(n)) 

Hence 

Theorem 2 is established. 

c(t)dt= L(/~(1))exp (f6S~) c(t)/L(t)dt)< oo. 

[] 

either 

o r  

- -  1 " - ~  I 

lim - -  S'. l o T  ~ [=  
,4| a, t'z'_-o= 

a . e .  

._~ 
lim --1 l o T  k = 0  a.e. 

We do not know if Theorem 2" is true for f ~ L1 with fxfdl.t = O. 

We have actually proved (on application of Theorem E): 

THEOREM 2". If (X, ~, tz, T) is a c.e.m.p.t, of a non-atomic, or-finite, infinite 
measure space then 

u and fEL~(X,~,I~)  s.t. f fdtz~O: 
J x  
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w Proof of Theorem 1 and an example 

If the conclusion to Theorem 1 fails, then f #  0 and b, ~ ~. It follows that 

n - - I  1 1 ~-1 
tim b .  ~:o2 f ~ ~ (x) -< lim ~. ._ |  kE:o f~ 

and 

thus 

lim ~--~, '~  focrk(x)<= Z f~176176 
n ~  k = 0  ~ k = 0  

1 n - 1  - -  1 n - - I  

i i m ~  ~ foot  k and lim~-k~__ ofoor E 
n ~  k ~ 0  n ~  = 

are constants a.e.; and the failure of the conclusion of Theorem 1 is tantamount 

to: 

(2.1) 
1 "-'  1 "-' 

O < a = l i m - ~  ~ foo'k(x)<=lim~ ~ focr~(x)=/3<oo VxEI'I' 
n ~  ~ k = O  n ~  k ~ 0  

where P(fl ')  = 1. If it is assumed that E( / )  = 0% then b./n ~ ~, and so (2.1) is 

unchanged by the addition of an integrable function to f. So no generality is lost 

in assuming f: f~--+ N. 

Choose Xo~lT and let b, = E~-~f(o-~Xo), then b, </7,+1 and 

n - - 1  
1 = > a  lim _-=- ~', f o ~r k > 0 a.e., 

. ~  b, k=o /3 

- -  1 . -1  B 
lim _-=- ~ [ o o -k = - -  < a < oo a.e. 
.~= bn k=o 

Normalizing b, we have established: 

STEP 1. If the conclusion of Theorem 1 fails, and E ( / ) = ~ ,  then no 

generality is lost in assuming: 

(i) f: 1 " ~  N, 

(if) b, < b.+,, 

(iii) 1 < lirn,_.(1/b,)E~-'ofo~r k <-iim,_~(1/b,)E~-~ofoot ~ < M a.e. (M E N). 

Choose a continuous, strictly increasing function b(t) s.t. b(n) = b,. Let a be 

the inverse of b. Then a(t) is continuous and strictly increasing. 

Before continuing, we need a lemma, analogous to that of w 
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LEMMA. Vm -> 1 3no s.t. Vn >- no: 

(i) b(mn)<- Mmb(n), 
(ii) mb(n) <- Mb(mn). 

PROOF. By (iii) of Step 1, Vn _-> 1 3no(m) s.t. Vn _-> no(m) =Ix E ~ s.t. 

n--1 

b(n)<= ~ foo'k(o""x)<=Mb(n) O<=j<_m-1 
k = O  

m n - - I  

b(mn) <= ~ f(akx) <= Mb(mn). 
k = O  

The inequalities follow from the fact that 

r a n - 1  m- -1  n--1 

X X X 
k = O  i = 0  k = O  

[] 

Let f. (x) n- -1  k = ~,k=ofotr (x). 

STEP 2. 

PROOF. 

l_<lim --a(f")<_l-:-~m a(f.)<_M2 
' n n ~ =  n 

n ~  

a .e .  

From (ii) of the Lemma, with m = M 2, we get no s.t. Vn => no, 

M2b(rl) <= Mb(M2n), i.e. Mb(n) ~ b(M2n). 

Now, by (iii) of Step 1, for a.e. x E ~ :IN s.t. Vn => N 

b(n) <= f. <- Mb(n) <= b(M2n) 

n <= a(f,) <= M2n. [] 

Now we build a tower on (~, M, P, o') with f as the height function ([3]): 

X = {(x, n ) : f ( x )  > - -  n ,  n >= 1}, 
(A,n)={(x ,n):xEA} where A ~ M A [ f - > n ] ;  

: r : 

n = l  n = l  

T(x ,n )={(x ,n+l )  if f(x)>=n+l 

(o-x, 1) if f(x) = n. 

It was shown in [3] that (X, ~,/z,  T) is a c.e.m.p.t, and tha t / z (X)  = E(f). We 

derived Step 2 on the assumptions that E(f) = oo and that the theorem fails. We 
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prove the theorem by deriving from Step 2 that t x (X)<  ~ (contradicting the 

assumption that E(f)= ~). Let ~ = (1"~, 1). Clearly 

f.(x)-I 

la(T'(x, 1)) = n Vx E ft. 
/ = 0  

Choose k.(x)s.t,  f~,a)(x)<= n < h,~,)+,(x). Then k,(x)~oo a.e. and 

1 .-1 f~., 
l i r a - - - ~  ln(T~(x, 1))= > lira (h.+,(x)) ~ ln(T'(x, 1)) 

a(n) k=o .L~ ,=,1 
k,(x) > l 

= lira a(fk.+~(x))= M2 by Step 2, 

- -  1 .-1 - -  1 r~.+,-1 
lim.~= a ~  kZ=o la(Tk(x'l))<=lim,,~| a(fk.(x)i ,=oZ lri(T' (x, a)) 

k. (x )+  1 < 1 by Step 2. = lim a(fk.(x))= 

So by Theorem 2 p . ( X ) <  oo. []  

AN EXAMPLE. We construct an e.m.p.t. (fLM, P, tr) and a measurable 

X : f ~ Z  s.t. E ( [ X I ) = ~  and ,-1 (1/n)E~=oXotr k ~ 1 a.e. 

Construction 1 (Ex. (a), [4]). An e.m.p.t. (tl, sO, P, 6.) and a measurable 

[:~---~N s.t. E ( f ) =  ~ and (1/n)fo6."~O a.e. 
Let (l~', M', P', tr') be an e.m.p.t., let ~: ft'---~ N be s.t. E(tp) < ~, E (~  2) = oo. 

We define f on the tower above tr' with height function ~. 

Let fi={(x,n):n>=l,q~(x)>=n}, , ~ =  V~=, (,if' n [g, -> hi, n), P =  

(1/C)E:=, P']r where C = E(q~), 

6.(x, n)  

[ (or'x, 1) if q~(x)= n. 

Then ([3]) (~, sr P, 6)  is an e.m.p.t, and P ( f l ) =  1. 

Let f : ~ N  be defined by f (x ,n)= n; 

( x , n + l )  if r  

1 ~ 1 ~ n ( n + l )  
E (f) = C k = l  ke'(q~ => k) = C n=l 2 et'(~ = n )  = O0. 

If we show that fo(6""(x, 1))/n--~0 for a.e. x E f l '  then by the ergodicity of 6., 

f o,5""/n--*0 a.e. on 1~. 

Let q~,(x) = X~=o"-I ~o(cr'~x). If q~k(x)= < n < q~k.t(x) then f(6""(x, 1)) <= q~(o"kx) 
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and so f(6"" (x, 1)/n <= cp (or'~x)/~ (x). By the ergodic theorem r (or'~x)/tpk (x) --~ 0 
a.e. on 1"1' as k ~ ~o. So construction 1 is finished. [] 
We now construct the Example. 

Construction 2 (Adapted from Ex. (b), [4]). Let I = [0, 1), ~ be the Borel 
or-algebra, A be Lebesgue measure and r = 2x rood 1. Let 

u (x )=  I - 1  if xE[0,21) 

! + I  if x E [~,1), 

then the {u o r are independent, identically distributed random variables, and 
(I, ~,  A, r is mixing. 

Let f l = f l x I ,  ~ = ~ x ~ ,  P=P•  and o r = f • 1 6 2  then ( f l ,~ ,P ,  or) is 

e.m.p.t. 
Let X(x, y) = f(x)u(y)-f(6,x)u(zy)+ 1, then 

I f  ( f+ foO+l)dP=~ E(X+)=>fnxt.-, ...... 1] (f(x)+f(6"x)+ 1)dP(x,y)=-~ n 

and 

n--1 
L ~ X oor~(x, Y) = 1 + f ( x ) u ( y ) -  f(~'x)u(~-'y)__, 1 
rl k=o FI 

a.e. [] 
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